29 research outputs found

    Riconoscimento automatico di accordi e note eseguiti da strumenti musicali

    Get PDF
    Il presente lavoro di tesi si colloca nell'ambito dell'Informatica Musicale la quale si occupa di produrre software o hardware di ausilio alla composizione, produzione e ottimizzazione della musica. L'obiettivo di questo lavoro consiste nello sviluppo di un sistema in grado di riconoscere accordi, melodie e tonalità di un'esecuzione musicale al fine di creare uno strumento di supporto al musicista/compositore, dotato di funzionalità che gli permettano di migliorare la sua esperienza musicale. In questa tesi ci si è focalizzati sullo sviluppo del riconoscimento di accordi, melodie e tonalità, in modo da fornire un solido supporto alle applicazioni basate su di esso che potranno essere sviluppate. In particolare è stata creata un'interfaccia che presenta tutti i dati prodotti dall'analisi musicale, fornendo all'utente degli esempi di come questi dati possano essere utilizzati

    An Architecture for Declarative Real-Time Scheduling on Linux

    Get PDF
    This paper proposes a novel framework and programming model for real-time applications supporting a declarative access to real-time CPU scheduling features that are available on an operating system. The core idea is to let applications declare their temporal characteristics and/or requirements on the CPU allocation, where, for example, some of them may require real-time POSIX priorities, whilst others might need resource reservations through SCHED_DEADLINE. The framework can properly handle such a set of heterogeneous requirements configuring an underlying multi-core platform so to exploit the various scheduling disciplines that are available in the kernel, matching applications requirements. The framework is realized as a modular architecture in which different plugins handle independently certain real-time scheduling features within the underlying kernel, easing the customization of its behavior to support other schedulers or operating systems by adding further plugins

    Scheduling Replica Voting in Fixed-Priority Real-Time Systems

    Get PDF
    Reliability and safety are mandatory requirements for safety-critical embedded systems. The design of a fault-tolerant system is required in many fields (e.g., railway, automotive, avionics) and redundancy helps in achieving this goal. Redundant systems typically leverage voting techniques applied to the outputs produced by tasks to detect and even tolerate failures. This paper studies the integration of distributed voting protocols in fixed-priority real-time systems from a scheduling perspective. It analyzes two scheduling strategies for implementing voting. One is attractive and friendly for software developers and based on suspending the task execution until the replica provides the data to be voted. The other one is inspired by the Logical Execution Time (LET) paradigm and requires introducing additional tasks in the system to accomplish voting-related activities. Queuing and delays introduced by inter-replica communication interfaces are also analyzed. Experimental results are finally presented to compare the two strategies, showing that LET-inspired voting is much more predictable and hence more suitable than the other strategy for fixed-priority real-time systems

    Health literacy, emotionality, scientific evidence: Elements of an effective communication in public health

    Get PDF
    The importance of healthcare providers' communication abilities is still underestimated. Informing the population on the basis of documented evidence is essential but not enough to induce a change in the beliefs of who is doubtful or does not accept preventive interventions, such as vaccination. Lining up the offer of prevention to the knowledge of the citizens, also improving Health Literacy skills, is a critical step toward their empowerment and behavior change. The 2017 Erice Declaration was drafted to propose to the Institutions and the scientific community the main goals to improve communication and counteract Vaccine Hesitancy, at a very critical time, when mandatory vaccination was introduced in Italy

    Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks

    Get PDF
    These authors contributed equally: Alpha K. Keita, Fara R. Koundouno, Martin Faye, Ariane Düx, Julia Hinzmann.International audienc

    The Sardinia Radio Telescope . From a technological project to a radio observatory

    Get PDF
    Context. The Sardinia Radio Telescope (SRT) is the new 64 m dish operated by the Italian National Institute for Astrophysics (INAF). Its active surface, comprised of 1008 separate aluminium panels supported by electromechanical actuators, will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested: a 7-beam K-band receiver, a mono-feed C-band receiver, and a coaxial dual-feed L/P band receiver. The SRT was officially opened in September 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the scientific capabilities of the SRT. Aims: The scientific commissioning phase, carried out in the 2012-2015 period, proceeded in stages following the implementation and/or fine-tuning of advanced subsystems such as the active surface, the derotator, new releases of the acquisition software, etc. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope subsystems for further optimization. As a result, the overall telescope performance has been significantly improved. Methods: As part of the scientific commissioning activities, different observing modes were tested and validated, and the first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools to support future observers on site. In the following, we refer to the overall scientific commissioning and software development activities as astronomical validation. Results: The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as part of European networks. As a result, the SRT started to participate (in shared-risk mode) in European VLBI Network (EVN) and Large European Array for Pulsars (LEAP) observing sessions in early 2014. The validation of single-dish operations for the suite of SRT first light receivers and backends continued in the following year, and was concluded with the first call for shared-risk early-science observations issued at the end of 2015. As discussed in the paper, the SRT capabilities were tested (and optimized when possible) for several different observing modes: imaging, spectroscopy, pulsar timing, and transients

    The high-frequency upgrade of the Sardinia Radio Telescope

    Get PDF
    We present the status of the Sardinia Radio Telescope (SRT) and its forthcoming update planned in the next few years. The post-process scenario of the upgraded infrastructure will allow the national and international scientific community to use the SRT for the study of the Universe at high radio frequencies (up to 116 GHz), both in single dish and in interferometric mode. A telescope like SRT, operating at high frequencies, represents a unique resource for the scientific community. The telescope will be ideal for mapping quickly and with relatively high angular resolution extended radio emissions characterized by low surface brightness. It will also be essential for spectroscopic and polarimetric studies of both Galactic and extragalactic radio sources. With the use of the interferometric technique, SRT and the other Italian antennas (Medicina and Noto) will operate within the national and international radiotelescope network, allowing astronomers to obtain images of radio sources at very high angular resolution

    Status of the High-Frequency Upgrade of the Sardinia Radio Telescope

    Get PDF
    The Sardinia Radio Telescope is going through a major upgrade aimed at observing the universe at up to 116 GHz. A budget of 18.700.000 E has been awarded to the Italian National Institute of Astrophysics to acquire new state-of-the-art receivers, back-end, and high-performance computing, to develop a sophisticated metrology system and to upgrade the infrastructure and laboratories. This contribution draws the status of the whole project at eight months from the end of the funding scheme planned for August 2022
    corecore